DNA repair synthesis in human fibroblasts requires DNA polymerase delta.
نویسندگان
چکیده
When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II (Crute, J. J., Wahl, A. F., and Bambara, R. A. (1986) Biochemistry 25, 26-36). Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone. This result suggests that cytosol-depleted permeabilized DNA repair-defective human fibroblasts and HeLa DNA polymerase delta might be exploited to provide a functional assay for purifying active DNA repair factors from DNA repair-proficient cells without a preknowledge of their function.
منابع مشابه
Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells.
Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has...
متن کاملDNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair.
The joining of single-stranded breaks in double-stranded DNA is an essential step in many important processes such as DNA replication, DNA repair, and genetic recombination. Several data implicate a role for DNA ligase I in DNA replication, probably coordinated by the action of other enzymes and proteins. Since both DNA polymerases delta and epsilon show multiple functions in different DNA tran...
متن کاملComparative enzymology of ultraviolet-induced DNA repair synthesis and semiconservative DNA replication in permeable diploid human fibroblasts.
In nongrowing mammalian cells, DNA repair synthesis following irradiation with high doses of UV is almost totally inhibited by aphidicolin, an agent specific for DNA polymerase alpha, and presumably is mediated by that polymerase. In this paper, several enzymologic characteristics of DNA repair synthesis induced in permeable confluent diploid human fibroblasts by high doses of UV have been exam...
متن کاملReconstitution of recombination-associated DNA synthesis with human proteins
The repair of DNA breaks by homologous recombination is a high-fidelity process, necessary for the maintenance of genome integrity. Thus, DNA synthesis associated with recombinational repair must be largely error-free. In this report, we show that human DNA polymerase delta (δ) is capable of robust DNA synthesis at RAD51-mediated recombination intermediates dependent on the processivity clamp P...
متن کاملDNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 263 1 شماره
صفحات -
تاریخ انتشار 1988